Respuesta :
Let x be the first digit.
Let y be the second digit.
Let z be the third digit.
x+y+z=18
y= (-2)(-4)
y= 8
x= 3^2
x= 9
Therefore z=1.
The number is
= 100x+10y+z
= 100(9)+10(8)+(1)
= 981
Let y be the second digit.
Let z be the third digit.
x+y+z=18
y= (-2)(-4)
y= 8
x= 3^2
x= 9
Therefore z=1.
The number is
= 100x+10y+z
= 100(9)+10(8)+(1)
= 981
Hi! ⋇
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
The first digit of this number is 3², which is 9.
The Number is : 9xx
________
The second digit is: -2·(-4)=8.
The Number is : 98x.
________
The sum of all the digits is 18. This gives us an equation that we can solve in terms of x!
[tex]\multimap\sf{9+8+x=18}[/tex] (x is the digit we are looking for)
Now it takes a little arithmetic to find x :)
[tex]\multimap\sf{17+x=18}[/tex]. Just subtract 17 from both sides to find x!
[tex]\multimap\sf{x=1}[/tex]. And Now, can you see the number!
It's 981, of course :)
Hope this made sense to you!
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
[tex]\large\it{\overbrace{Calligrxphy}}[/tex]