Can someone help me with this?

Answer:
Let 'a' be the first term, 'r' be the common ratio and 'n' be the number of terms
Series = 2+6+18.......= 2+2•3¹+ 2•3².......= 728
Now,
[tex]Sum = \frac{a( {r}^{n} - 1) }{(r - 1)} \\ [/tex]
So,
[tex] \frac{a( {r}^{n} - 1)}{(r - 1)} = 728 \\ \frac{2( {3}^{n} - 1) }{(3 - 1)} = 728 \\ \frac{2( {3}^{n} - 1) }{2} = 728 \\ {3}^{n} - 1 = 728 \\ {3}^{n}=728+1\\ {3}^{n} = 729 \\ {3}^{n} = {3}^{6} \\ \boxed{ n = 6}[/tex]
Therefore, number of terms is 6
Its a GP given by 2+6+18
Common ratio=r=
[tex]\\ \bull\tt\looparrowright \dfrac{6}{2}=3[/tex]
Now
[tex]\\ \bull\tt\looparrowright S_n=728[/tex]
[tex]\\ \bull\tt\looparrowright \dfrac{a(r^n-1)}{r-1}=728[/tex]
[tex]\\ \bull\tt\looparrowright \dfrac{2(3^n-1)}{3-1}=728[/tex]
[tex]\\ \bull\tt\looparrowright \dfrac{2(3^n-1)}{2}=728[/tex]
[tex]\\ \bull\tt\looparrowright 3^n-1=728[/tex]
[tex]\\ \bull\tt\looparrowright 3^n=728+1[/tex]
[tex]\\ \bull\tt\looparrowright 3^n=729[/tex]
[tex]\\ \bull\tt\looparrowright 3^n=3^6[/tex]
[tex]\\ \bull\tt\looparrowright n=6[/tex]