Find an explicit formula for the geometric sequence -40,-20,-10......
Note: the first term should be c(1).

c(n)= ?

Respuesta :

Answer:

The explicit formula for the geometric sequence is [tex]c(n) = -40\cdot \left(\frac{1}{2} \right)^{n-1}[/tex].

Step-by-step explanation:

By definition of geometric sequence, we should use the following expression:

[tex]c(n) = c_{1}\cdot r^{n-1}[/tex], [tex]n \ge 1[/tex] (1)

Where:

[tex]c_{1}[/tex] - First term.

[tex]r[/tex] - Geometric rate.

[tex]n[/tex] - Position of the element within the series.

If we know that [tex]c_{1} = -40[/tex] and [tex]r = \frac{1}{2}[/tex], then the explicit formula for the geometric sequence is:

[tex]c(n) = -40\cdot \left(\frac{1}{2} \right)^{n-1}[/tex]

The explicit formula for the geometric sequence is [tex]c(n) = -40\cdot \left(\frac{1}{2} \right)^{n-1}[/tex].

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE