Respuesta :

Given:

[tex]\Delta ABC\sim \Delta D EF[/tex]

[tex]AB=15,BC=y,AC=18,DE=12,EF=9,DF=x[/tex]

To find:

The values of x and y.

Solution:

We have,

[tex]\Delta ABC\sim \Delta D EF[/tex]

Corresponding sides of similar triangles are proportional.

[tex]\dfrac{AB}{DE}=\dfrac{BC}{EF}=\dfrac{AC}{DF}[/tex]

On substituting the values, we get

[tex]\dfrac{15}{12}=\dfrac{y}{9}=\dfrac{18}{x}[/tex]

[tex]\dfrac{5}{4}=\dfrac{y}{9}=\dfrac{18}{x}[/tex]

Now,

[tex]\dfrac{5}{4}=\dfrac{y}{9}[/tex]

[tex]\dfrac{5}{4}\times 9=\dfrac{y}{9}\times 9[/tex]

[tex]\dfrac{45}{4}=y[/tex]

[tex]11.25=y[/tex]

And

[tex]\dfrac{5}{4}=\dfrac{18}{x}[/tex]

[tex]5\times x=18\times 4[/tex]

[tex]x=\dfrac{72}{5}[/tex]

[tex]x=14.4[/tex]

Therefore, the value of x is 14.4 units and value of y is 11.25 units.

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE