Respuesta :

Given:

[tex]f(x)=\dfrac{8}{x}[/tex]

[tex]g(x)=\dfrac{8}{x}[/tex]

To find:

Whether f(x) and g(x) are inverse of each other by using that f(g(x)) = x and g(f(x)) = x.

Solution:

We know that, two function are inverse of each other if:

[tex]f(g(x))=x[/tex] and [tex]g(f(x))[/tex]

We have,

[tex]f(x)=\dfrac{8}{x}[/tex]

[tex]g(x)=\dfrac{8}{x}[/tex]

Now,

[tex]f(g(x))=f(\dfrac{8}{x})[/tex]              [tex][\because g(x)=\dfrac{8}{x}][/tex]

[tex]f(g(x))=\dfrac{8}{\dfrac{8}{x}}[/tex]            [tex][\because f(x)=\dfrac{8}{x}][/tex]

[tex]f(g(x))=8\times \dfrac{x}{8}[/tex]

[tex]f(g(x))=x[/tex]

Similarly,

[tex]g(f(x))=f(\dfrac{8}{x})[/tex]              [tex][\because f(x)=\dfrac{8}{x}][/tex]

[tex]g(f(x))=\dfrac{8}{\dfrac{8}{x}}[/tex]            [tex][\because g(x)=\dfrac{8}{x}][/tex]

[tex]g(f(x))=8\times \dfrac{x}{8}[/tex]

[tex]g(f(x))=x[/tex]

Since, [tex]f(g(x))=x[/tex] and [tex]g(f(x))[/tex], therefore, f(x) and g(x) are inverse of each other.

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE