Respuesta :
Answer:
16 ways
Step-by-step explanation:
Number of available options other than the base model = 4
Hence ;
Jacobsen can choose :
Base model OR (base model + one option) OR (base model + 2 options) OR (Base model + 3 options) OR (Base model + 4 options)
4C0 + 4C1 + 4C2 + 4C3 + 4C4
Recall:
nCr = n! / (n-r)!r!
Using calculator :
4C0 + 4C1 + 4C2 + 4C3 + 4C4
1 + 4 + 6 + 4 + 1
= 16 ways
The different variations that is possible are :
-16 ways
"Permutation and Combination"
Number of available options other than the base model = 4.
Jacobsen can choose :
Base model OR (base model + one option) OR (base model + 2 options) OR (Base model + 3 options) OR (Base model + 4 options)= 4C0 + 4C1 +
4C2 + 4C3 + 4C4
Formula:
- nCr = n! / (n-r)!r!
- nCr =4C0 + 4C1 + 4C2 + 4C3 + 4C4
- nCr =1 + 4 + 6 + 4 + 1
- nCr= 16 ways
Learn more about "Combination":
https://brainly.com/question/1550504?referrer=searchResults