Answer:
[tex] \rm - \dfrac{11}{2} [/tex]
Step-by-step explanation:
[tex] \rm Simplify \: the \: following: \\ \rm \longrightarrow - 5 + \dfrac{i}{2} i \\ \\ \rm Combine \: powers. \\ \rm \dfrac{i \times i}{2} = \dfrac{i^{1 + 1}}{2}: \\ \rm \longrightarrow - 5 + \dfrac{i^{1 + 1}}{2} \\ \\ \rm 1 + 1 = 2: \\ \rm \longrightarrow - 5 + \dfrac{i^2}{2} \\ \\ \rm i^2 = -1: \\ \rm \longrightarrow - 5 + \dfrac{( - 1)}{2} \\ \\ \rm \longrightarrow - 5 - \dfrac{1}{2} \\ \\ \rm Put \: - 5 - \dfrac{1}{2} \: over \: the \: common \: denominator \: 2. \\ \rm - 5 - \dfrac{1}{2} = \dfrac{2( - 5)}{2} - \dfrac{1}{2} : \\ \rm \longrightarrow \dfrac{ - 5 \times 2}{2} - \dfrac{1}{2} \\ \\ \rm 2 (-5) = -10: \\ \rm \longrightarrow \dfrac{ - 10}{2} - \dfrac{1}{2} \\ \\ \rm \dfrac{ - 10}{2} - \dfrac{1}{2} = \dfrac{ - 10 - 1}{2} : \\ \rm \longrightarrow \dfrac{ - 10 - 1}{2} \\ \\ \rm -10 - 1 = -11: \\ \rm \longrightarrow - \dfrac{11}{2} [/tex]