Respuesta :

Answer:

[tex]x=\pm \sqrt{3}[/tex]

Step-by-step explanation:

Consider the given polynomial is

[tex]P(x)=x^2-3[/tex]

We need to find the zeros of the given polynomial.

Now,

[tex]P(x)=0[/tex]

[tex]x^2-3=0[/tex]

Add 3 on both sides.

[tex]x^2=3[/tex]

Taking square root on both sides.

[tex]x=\pm \sqrt{3}[/tex]

Therefore, zeros of the polynomial P(x) are [tex]-\sqrt{3} \text{ and }\sqrt{3}[/tex].

To verify the relationship, put [tex]x=\sqrt{3}[/tex] in P(x).

[tex]P(\sqrt{3})=(\sqrt{3})^2-3=3-3=0[/tex]

Put [tex]x=-\sqrt{3}[/tex] in P(x).

[tex]P(-\sqrt{3})=(-\sqrt{3})^2-3=3-3=0[/tex]

Since P(x)=0 for both values, therefore relationship verified.

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE