Answer:
[tex]x=\pm \sqrt{3}[/tex]
Step-by-step explanation:
Consider the given polynomial is
[tex]P(x)=x^2-3[/tex]
We need to find the zeros of the given polynomial.
Now,
[tex]P(x)=0[/tex]
[tex]x^2-3=0[/tex]
Add 3 on both sides.
[tex]x^2=3[/tex]
Taking square root on both sides.
[tex]x=\pm \sqrt{3}[/tex]
Therefore, zeros of the polynomial P(x) are [tex]-\sqrt{3} \text{ and }\sqrt{3}[/tex].
To verify the relationship, put [tex]x=\sqrt{3}[/tex] in P(x).
[tex]P(\sqrt{3})=(\sqrt{3})^2-3=3-3=0[/tex]
Put [tex]x=-\sqrt{3}[/tex] in P(x).
[tex]P(-\sqrt{3})=(-\sqrt{3})^2-3=3-3=0[/tex]
Since P(x)=0 for both values, therefore relationship verified.