Respuesta :

Answer:

[tex]x<48.84[/tex]

Step-by-step explanation:

Considering the expression

[tex]11.22x-200<347.96[/tex]

[tex]\mathrm{Multiply\:both\:sides\:by\:}100[/tex]

[tex]11.22x\cdot \:100-200\cdot \:100<347.96\cdot \:100[/tex]

[tex]\mathrm{Refine}[/tex]

[tex]1122x-20000<34796[/tex]

[tex]\mathrm{Add\:}20000\mathrm{\:to\:both\:sides}[/tex]

[tex]1122x-20000+20000<34796+20000[/tex]

[tex]\mathrm{Simplify}[/tex]

[tex]1122x<54796[/tex]

[tex]\mathrm{Divide\:both\:sides\:by\:}1122[/tex]

[tex]\frac{1122x}{1122}<\frac{54796}{1122}[/tex]

[tex]\mathrm{Simplify}[/tex]

[tex]x<\frac{27398}{561}[/tex]

[tex]x<48.83778[/tex]

Round the answer to the nearest hundredth

[tex]x<48.84[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE