a vector a has components a x equals -5.00 m in a y equals 9.00 meters find the magnitude and the direction of the vector

Respuesta :

Answer:

The magnitude = 10.30 m

The direction of the vector proceeds at angle of 119.05°

Explanation:

Given that:

A vector [tex]\bar A[/tex] has component [tex]A_x[/tex] = -5 m and [tex]A_y[/tex] = 9 m

The magnitude of vector  [tex]\bar A[/tex] can be represented as:

[tex]\bar A[/tex]  = [tex]\sqrt{A_x^2 + A_y^2}[/tex]

[tex]\bar A[/tex]  = [tex]\sqrt{(-5)^2 + (9)^2}[/tex]

[tex]\bar A[/tex]  = [tex]\sqrt{25 + 81}[/tex]

[tex]\bar A[/tex]  = [tex]\sqrt{106}[/tex]

[tex]\bar A[/tex]  = 10.30 m

If we make [tex]\bar A[/tex]  an angle [tex]\theta[/tex] with y- axis:

Then;   tan [tex]\theta[/tex]  = [tex]\frac{A_x}{A_y}[/tex]

tan [tex]\theta[/tex]  = [tex]\frac{5}{9}[/tex]

tan [tex]\theta[/tex]  = 0.555

[tex]\theta[/tex]  = tan⁻¹ (0.555)

[tex]\theta[/tex]  = 29.05°

Angle with positive x-axis = 90 + [tex]\theta[/tex]  

= 90° + 29.05°

= 119.05°

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE