Answer:
Option C has a lower present worth, thus his cost is lower than other options after, considering time value of money 595,098.03
Explanation:
Option A present worth 600,000
Option B present worth of annuity-due
[tex]C \times \frac{1-(1+r)^{-time} }{rate}(1+r) = PV\\[/tex]
C $ 69,000
time 25 years
rate 0.12
[tex]69000 \times \frac{1-(1+0.12)^{-25} }{0.12}(1+0.12) = PV\\[/tex]
PV $606,117.7906
Option C
650,000 cash payment less present value of the rental space:
[tex]C \times \frac{1-(1+r)^{-time} }{rate} = PV\\[/tex]
C $ 7,000
time 25 years
rate 0.12
[tex]7000 \times \frac{1-(1+0.12)^{-25} }{0.12} = PV\\[/tex]
PV $54,901.9738
650,000 - 54,901.97 = 595,098.03