Helppppp..... evaluate 3^-3=

ANSWER
The answer is
B
[tex] \frac{1}{27} [/tex]
EXPLANATION
The given expression is
[tex] {3}^{ - 3} [/tex]
Use the negative index property;
[tex] {a}^{ - m} = \frac{1}{ {a}^{m} } [/tex]
We apply this property to get:
[tex]{3}^{ - 3} = \frac{1}{ {3}^{3} } [/tex]
This gives us:
[tex]{3}^{ - 3} = \frac{1}{3 \times 3 \times 3 } [/tex]
[tex]{3}^{ - 3} = \frac{1}{27} [/tex]
The correct option is B.
For this case we must evaluate the following expression:
[tex]3 ^ {3}[/tex]
We have by definition of properties of powers that:
[tex]a ^ {- 1} = \frac {1} {a ^ 1} = \frac {1} {a}[/tex]
Then, rewriting the expression:
[tex]3 ^ {- 3} = \frac {1} {3 ^ 3} = \frac {1} {27}[/tex]
ANswer:
[tex]3 ^ {- 3} = \frac {1} {27}[/tex]
OptionB