Respuesta :

ANSWER

The answer is

B

[tex] \frac{1}{27} [/tex]

EXPLANATION

The given expression is

[tex] {3}^{ - 3} [/tex]

Use the negative index property;

[tex] {a}^{ - m} = \frac{1}{ {a}^{m} } [/tex]

We apply this property to get:

[tex]{3}^{ - 3} = \frac{1}{ {3}^{3} } [/tex]

This gives us:

[tex]{3}^{ - 3} = \frac{1}{3 \times 3 \times 3 } [/tex]

[tex]{3}^{ - 3} = \frac{1}{27} [/tex]

The correct option is B.

For this case we must evaluate the following expression:

[tex]3 ^ {3}[/tex]

We have by definition of properties of powers that:

[tex]a ^ {- 1} = \frac {1} {a ^ 1} = \frac {1} {a}[/tex]

Then, rewriting the expression:

[tex]3 ^ {- 3} = \frac {1} {3 ^ 3} = \frac {1} {27}[/tex]

ANswer:

[tex]3 ^ {- 3} = \frac {1} {27}[/tex]

OptionB

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE