Which of the following integrals represents the area of the region bounded by x = 0, x = 1 and the functions f(x) = -2x4 and g(x) = x2?

the integral from 0 to 1 of the quantity, x squared plus 2 times x to the 4th power, dx

the integral from 0 to 1 of the quantity, x squared minus 2 times x to the 4th power, dx

the integral from 0 to 1 of the quantity, negative 2 times x to the 4th power minus x squared, dx

the integral from 0 to 1 of the quantity, x to the 4th power minus 4 times x to the 8th power, dx

Respuesta :

Space

Answer:

A.  [tex]\displaystyle \int\limits^1_0 {(x^2 + 2x^4)} \, dx[/tex]

General Formulas and Concepts:

Algebra I

Functions

  • Function Notation
  • Graphing

Calculus

Integration

  • Integrals
  • Definite Integrals
  • Integration Constant C
  • Area under the curve/area between 2 curves

Area of a Region Formula:                                                                                     [tex]\displaystyle A = \int\limits^b_a {[f(x) - g(x)]} \, dx[/tex]

  • f(x) is top function, g(x) is bottom function

Step-by-step explanation:

Step 1: Define

Identify

f(x) = -2x⁴

g(x) = x²

Interval bound [0, 1]

Step 2: Visualize

Graph the given and identify more information. See attachment.

Top function: g(x)

Bottom function: f(x)

Bounds of Integration: [0, 1]

Step 3: Find Area

  1. Substitute in variables [Area of a Region Formula]:                                   [tex]\displaystyle A = \int\limits^1_0 {[x^2 - (-2x^4)]} \, dx[/tex]
  2. [Integral] Simplify:                                                                                         [tex]\displaystyle A = \int\limits^1_0 {(x^2 + 2x^4)} \, dx[/tex]

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e

Ver imagen Space
ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE