Drag a statement or reason to each box to complete this proof.



Given: Quadrilateral ABCD with m∠A=(7x)° , m∠B=(5x)° , m∠C=(7x)° , and m∠D=(5x)° .

Prove: x = 15

Drag a statement or reason to each box to complete this proof Given Quadrilateral ABCD with mA7x mB5x mC7x and mD5x Prove x 15 class=
Drag a statement or reason to each box to complete this proof Given Quadrilateral ABCD with mA7x mB5x mC7x and mD5x Prove x 15 class=

Respuesta :

In the given quadrilateral ABCD,

[tex] m\angle A=7x^{\circ} , m\angle B=5x^{\circ}, m\angle C=7x^{\circ} , m\angle D=5x^{\circ} (Given) [/tex]

[tex] m\angle A + m\angle B+ m\angle C+ m\angle D=360^{\circ} [/tex]

(Sum of interior angles of a quadrilateral is 360 degrees)

[tex] 7x\dot{^{\circ}} + 5x^{\circ}+ 7x\dot{^{\circ}} + 5x^{\circ}=360^{\circ} [/tex](Substitution Property)

[tex] 24x^{\circ}=360\dot{^{\circ}} [/tex] (Addition Property of Equality)

[tex] x=15^{\circ} [/tex]

Ver imagen pinquancaro

Answer:

2.

Statement

m∠A + m∠B + m∠C + m∠D = 360°

Reason

The sum of interior angles of a quadrilateral is 360°

3.

Statement

(7x)° + (5x)° + (7x)° + (5x)° = 360°

Reason

Substitution property

4.

Statement

24x =  360

Reason

Combine like terms

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE