Respuesta :

Distance between the Tulsa, OK observatory and the center of this fictional earthquake: 20 kilometers.

An earthquake generates two major seismic waves that travel through the crest at different speeds:

  • Primary (P) waves travel at between 6 and 7 [tex]\text{km} \cdot \text{s}^{-1}[/tex]
  • Secondary (S) waves travel at approximately 3.5 [tex]\text{km} \cdot \text{s}^{-1}[/tex].

Let [tex]v_\text{P}[/tex] and [tex]v_{\text{S}}[/tex] denote the speed of the two waves, respectively. Let [tex]t_\text{P}[/tex], [tex]t_\text{S}[/tex] resembles the time required for each waves to reach the observatory.

Both [tex]t_\text{P} \cdot v_\text{P}[/tex] and [tex]t_\text{S} \cdot v_\text{S}[/tex] would represent the separation between the source and the observatory. Thus

[tex]t_\text{P} \cdot v_\text{P} = d\\t_\text{S} \cdot v_\text{S} = d\\[/tex]

[tex]t_\text{P} = d / v_\text{P}\\t_\text{S} = d / v_\text{P}[/tex]

Given the difference between  [tex]t_\text{P}[/tex] and [tex]t_\text{S}[/tex]:

[tex]t_\text{S} - t_\text{P} = 2.5 \; \text{minutes} = 150 \; \text{seconds}[/tex]

([tex]t_\text{P} < t_\text{S}[/tex] given that [tex]v_\text{P} > v_\text{S}[/tex] and  [tex]1/ v_\text{P} < 1/ v_\text{S}[/tex])

[tex]d / v_\text{S} - d / v_\text{P} = t_\text{S} - t_\text{P} = 150 \; \text{seconds}\\d \cdot (1/v_\text{S} - 1/v_\text{P}) = 150 \; \text{seconds}[/tex]

[tex]d = 150 \; \text{s} / ((1/(3.5 \; \text{km} \cdot \text{s}^{-1}) - 1/(6.5 \; \text{km} \cdot \text{s}^{-1}))\\\phantom{d} =2.0 \times 10\; \text{km} = 20 \; \text{km}[/tex]

Note that wave speed data involved in calculations above came from an external source. You shall repeat those steps with speeds indicated on the worksheet if possible.

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE