The answer is: " 53 [tex] \frac{1}{3} [/tex] % " .
__________________________________________
→ " 53 [tex] \frac{1}{3} [/tex] % " of 75 is "40" .
__________________________________________
Explanation:
To solve:
[tex] \frac{x}{100} [/tex] * 75 = 40 ;
→ Rewrite as:
[tex] \frac{x}{100} [/tex] * [tex] \frac{75}{1} [/tex] = 40 ;
→ The "100" cancels to "4" ; and the "75" cancels to "3" ;
→ {since: "{100 ÷ 25 = 4}" ; and since: "{75 ÷ 25 = 3"} ;
→ So; we rewrite the problem as:
→ [tex] \frac{x}{4} [/tex] * [tex] \frac{3}{1} [/tex] = 40 ;
→ which is:
[tex] \frac{x}{4} [/tex] * 3 = 40 ;
→ Divide each side of the equation by "3" ;
[tex] \frac{x}{4} [/tex] * 3 ÷ 3 = 40 ÷ 3 ;
to get:
→ [tex] \frac{x}{4} [/tex] = [tex] \frac{40}{3} [/tex] ;
Now, cross-multiply:
→ 3x = (4)*(40) ;
→ 3x = 160 ;
Divide each side of the equation by "3" ;
to isolate "x" on one side of the equation; & to solve for "x" ;
→ 3x / 3 = 160 / 3 ;
to get:
→ x = 53 [tex] \frac{1}{3} [/tex] .
______________________________