booss
contestada

what are the possible lengths for x, the third side of a triangle, if two sides are 21 and 10

Respuesta :

To solve we need to use Pythagoras theorem ( [tex]a^{2} + b^{2} = c^{2} [/tex] )

There are 2 possible lengths for x: hypotenuse or one of the 2 shorter sides.

Hypotenuse:
10^{2} + 21^2 = [tex] x^{2} [/tex]
100+441= [tex] x^{2} [/tex]
[tex] \sqrt{541} = \sqrt{ x^{2} } [/tex]
23.3≈x

Shorter leg:
[tex]10^2 + x^2=21^2[/tex]
[tex]x^2= 21^2-10^2[/tex]
[tex] x^{2} [/tex]= 441-100 
[tex] \sqrt{ x^{2} } = \sqrt{341} [/tex]
x≈18.47
ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE