Respuesta :
To find the vertex, [tex](h,k)[/tex], or a quadratic of the form [tex]ax^2+bx+c[/tex], we are going to use the vertex formula: [tex]h= \frac{-b}{2a} [/tex], and then, we are going to evaluate the function at [tex]h[/tex] to find [tex]k[/tex]:
We can infer four our quadratic 4x^2+8x-8 that [tex]a=4[/tex] and [tex]b=8[/tex], so lets replace those values in our formula to find [tex]h[/tex]:
[tex]h= \frac{-b}{2a} [/tex]
[tex]h= \frac{-8}{(2)(4)} [/tex]
[tex]h= \frac{-8}{8} [/tex]
[tex]h=-1[/tex]
To find [tex]k[/tex] we are going to evaluate the quadratic at [tex]h=-1[/tex]. In other words, we are going to replace [tex]x[/tex] with -1:
[tex]4x^2+8x-8[/tex]
[tex]k=4(-1)^2+8(-1)-8[/tex]
[tex]k=4-8-8[/tex]
[tex]k=-12[/tex]
Our vertex is (-1,-12). We can conclude that the y value of the vertex of 4x^2+8x-8 is -12.
We can infer four our quadratic 4x^2+8x-8 that [tex]a=4[/tex] and [tex]b=8[/tex], so lets replace those values in our formula to find [tex]h[/tex]:
[tex]h= \frac{-b}{2a} [/tex]
[tex]h= \frac{-8}{(2)(4)} [/tex]
[tex]h= \frac{-8}{8} [/tex]
[tex]h=-1[/tex]
To find [tex]k[/tex] we are going to evaluate the quadratic at [tex]h=-1[/tex]. In other words, we are going to replace [tex]x[/tex] with -1:
[tex]4x^2+8x-8[/tex]
[tex]k=4(-1)^2+8(-1)-8[/tex]
[tex]k=4-8-8[/tex]
[tex]k=-12[/tex]
Our vertex is (-1,-12). We can conclude that the y value of the vertex of 4x^2+8x-8 is -12.

Answer:
The y-value of the vertex is [tex]-12[/tex]
Step-by-step explanation:
we know that
The equation of a vertical parabola into vertex form is equal to
[tex]f(x)=a(x-h)^{2}+k[/tex]
where
(h,k) is the vertex of the parabola
In this problem we have
[tex]f(x)=4x^{2}+8x-8[/tex] -----> this a vertical parabola open upward
Convert to vertex form
Group terms that contain the same variable, and move the constant to the opposite side of the equation
[tex]f(x)+8=4x^{2}+8x[/tex]
Factor the leading coefficient
[tex]f(x)+8=4(x^{2}+2x)[/tex]
Complete the square. Remember to balance the equation by adding the same constants to each side
[tex]f(x)+8+4=4(x^{2}+2x+1)[/tex]
[tex]f(x)+12=4(x^{2}+2x+1)[/tex]
Rewrite as perfect squares
[tex]f(x)+12=4(x+1)^{2}[/tex]
[tex]f(x)=4(x+1)^{2}-12[/tex]
The vertex is the point [tex](-1,-12)[/tex]
The y-value of the vertex is [tex]-12[/tex]