The sizes of cans on a shelf are listed below.

18 oz, 8 oz, 16 oz, 20 oz, 20 oz, 16 oz, 12 oz, 8 oz

What is the interquartile range of this list?
A)2
B)6
C)9
D)12

Respuesta :

Answer:

Option C. 9

Step-by-step explanation:

To solve this question we will follow the following steps.

1).First we will arrange the data in ascending order.

8 oz, 8 oz, 12 oz, 16 oz, 16 oz, 18 oz, 20 oz, 20 oz

2).Now median of this arrangement of data will be

= [tex]\frac{16+16}{2}=16[/tex]

Median = 16

3).Now lower quartile of this sequence is 8, 8, 12, 16 and the upper quartile is 16, 18, 20, 20

4).Median of lower quatile = [tex]\frac{8+12}{2}=\frac{20}{2}=10[/tex]

5).Median of upper quartile = [tex]\frac{18+20}{2}=\frac{38}{2}=19[/tex]

6). Now we will subtract median of lower quartile from upper quartile to get the interquartile range of this list

Interquartile range = 19 - 10 = 9

Therefore Option C) 9 is the correct option.

Answer:

c

Step-by-step explanation:

\_(ii)_/

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE