The correct answer is: [D]: " H(x) = 3x(x - 2) - 4 " .
__________________________________________________
Note: A "quadratic function" takes the form of:
__________________________________________________
f(x) = ax² + bx + c ;
_________________________________________________
Answer choice: [D]: " H(x) = 3x(x - 2) - 4 " ;
takes this form:
_________________________________________________
" H(x) = 3x(x - 2) - 4 " ;
→ " 3x(x - 2) - 4 " ;
Note the "distributive property" of multiplication:
_________________________________________________
a(b + c) = ab + ac ; AND
a(b - c) = ab - ac ;
_________________________________________________
→ As such;
" 3x(x - 2) = (3x * x) - (3x * 2) = 3x² - 6x;
So, we can rewrite the expression:
→ " 3x(x - 2) - 4 " ;
as: → " 3x² - 6x - 4 ;
And the entire function as:
H(x) = 3x(x - 2) - 4 ;
as:
H(x) = 3x² - 6x - 4 ;
Which takes the form of a "quadratic function" ;
→ f(x) = ax² + bx + c ;
in which: a = 3 ; b = - 6 ; c = - 4 .
____________________________________________________