The distance between points is given by: d = root ((x2-x1) ^ 2 + (y2-y1) ^ 2) We then look for the distance between the vertices: For AB: AB = root ((4 - (- 4)) ^ 2+ (8 - (- 2)) ^ 2) AB = 12.80624847 For AC: AC = root ((- 7 - (- 4)) ^ 2 + (- 2 - (- 2)) ^ 2) AC = 3 For BC: BC = root ((- 7-4) ^ 2 + (- 2-8) ^ 2) BC = 14.86606875 The perimeter will be: P = AB + AC + BC Substituting values: P = 12.80624847 + 3 + 14.86606875 P = 30.67231722 Round to the nearest tenth: P = 30.7 units Answer: the perimeter of ABC is: P = 30.7 units