An Ellipse is centered at (0,0) if the equation of the ellipse is 14x^2+4y^2=196 find the equation of the ellipse in standard form and the vertiesOf both the major and minor axis


Respuesta :

[tex] 14 x^{2} +4 y^{2} = 196 [/tex][tex] \frac{14 x^{2} }{196} + \frac{4y}{196} = 1 [/tex]
[tex] \frac{ x^{2} }{14} + \frac{ y^{2} }{49} = 1 To find Major Axis we have to find biggest denominator, it is 49. The major axis is on the y-axis. 49=a^2, a=7, Center (0,0). Vertices of major axis =(0,0+a) and (0,0-a) Vertices of major axis(0,-7), (0,+7) Minor axis is on the x-axis. b^2=14, b= \sqrt{14} Vertices of minor axis (- \sqrt{14}, 0), ( \sqrt{14} , 0) [/tex]

Answer:

C edge2020

Step-by-step explanation:

Ver imagen ngretta03
ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE