Respuesta :
[tex]f(x) = \dfrac{2x+7}{x+1} [/tex]
[tex]\text {Let y = }f(x),[/tex]
[tex]y= \dfrac{2x+7}{x+1}[/tex]
[tex]y(x + 1) = 2x + 7[/tex]
[tex]xy + y = 2x + 7[/tex]
[tex]xy - 2x = 7 - y[/tex]
[tex]x(y - 2) = 7 - y[/tex]
[tex]x = \dfrac{7-y}{y-2} [/tex]
[tex]f^{-1}(x) = \dfrac{7-x}{x-2}[/tex]
[tex]\text {Let y = }f(x),[/tex]
[tex]y= \dfrac{2x+7}{x+1}[/tex]
[tex]y(x + 1) = 2x + 7[/tex]
[tex]xy + y = 2x + 7[/tex]
[tex]xy - 2x = 7 - y[/tex]
[tex]x(y - 2) = 7 - y[/tex]
[tex]x = \dfrac{7-y}{y-2} [/tex]
[tex]f^{-1}(x) = \dfrac{7-x}{x-2}[/tex]
Hey there :)
f ( x ) is also y
So [tex]f(x)= \frac{2x+7}{x+1} [/tex] is [tex] y = \frac{2x+7}{x+1} [/tex]
To find the inverse, reverse the places of x and y, let y be in the place of x and x in the place of y
↓
[tex]x = \frac{2y+7}{y+1} [/tex]
x ( y + 1 ) = 2y +7
xy + x = 2y + 7
xy - 2y = 7 - x
Take y as common factor
y ( x - 2 ) = 7 - x
Divide by x - 2 on either side to isolate y and thus find the inverse
[tex] \frac{y(x-2)}{(x-2)} = \frac{7-x}{x-2} [/tex]
y = [tex] \frac{7-x}{x-2} [/tex]
Therefore the inverse of the function is:
f ⁻¹ ( x ) = [tex] \frac{7-x}{x-2} [/tex]
f ( x ) is also y
So [tex]f(x)= \frac{2x+7}{x+1} [/tex] is [tex] y = \frac{2x+7}{x+1} [/tex]
To find the inverse, reverse the places of x and y, let y be in the place of x and x in the place of y
↓
[tex]x = \frac{2y+7}{y+1} [/tex]
x ( y + 1 ) = 2y +7
xy + x = 2y + 7
xy - 2y = 7 - x
Take y as common factor
y ( x - 2 ) = 7 - x
Divide by x - 2 on either side to isolate y and thus find the inverse
[tex] \frac{y(x-2)}{(x-2)} = \frac{7-x}{x-2} [/tex]
y = [tex] \frac{7-x}{x-2} [/tex]
Therefore the inverse of the function is:
f ⁻¹ ( x ) = [tex] \frac{7-x}{x-2} [/tex]