These data show the ring size for a sample of 8 men 12 10 11.5,11.5, 12, 9, 9 , 11 what is the best approximation of the standard deviation of the ring size data

Respuesta :

Given the data above N=8
mean is (12+10+11.5+11.5+12+9+9+11)/8
            thus, mean = 10.75
Sample standard, s= √(∑(x-m)²)/(n-1)
                               = 1.172 
I therefore, believe that the best approximation of standard deviation is 1.17

Answer:

Standard deviation of ring size is 1.253

Step-by-step explanation:

We are given the following data-set:

12, 10, 11.5, 11.5, 12, 9, 9, 11

n = 8

Formula:

[tex]\text{Standard Deviation} = \sqrt{\displaystyle\frac{\sum (x_i -\bar{x})^2}{n-1}}[/tex]  

where [tex]x_i[/tex] are data points, [tex]\bar{x}[/tex] is the mean and n is the number of observations.  

[tex]Mean = \displaystyle\frac{\text{Sum of all observations}}{\text{Total number of observation}}[/tex]

[tex]Mean =\displaystyle\frac{86}{8} = 10.75[/tex]

Sum of squares of differences = 1.5625 + 0.5625 + 0.5625 + 0.5625 + 1.5625 + 3.0625 + 3.0625 + 0.0625 = 11

[tex]S.D = \sqrt{\displaystyle\frac{11}{7}} = 1.253[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE