Respuesta :

[tex]AB= \sqrt{(-2-(-1))^2+(1-4)^2}= \sqrt{1+9}= \sqrt{10} \approx 3.2\\\\ BC= \sqrt{(2-(-2))^2+(1-1)^2}= \sqrt{16}=4\\\\ AC= \sqrt{(2-(-1))^2+(1-4)^2}= \sqrt{9+9}= \sqrt{18} \approx 4.2 \\\\ P_{ABC}=AB+BC+AC=3.2+4+4.2=11.4[/tex]

The perimeter of ∆ABC = 11.4 units

ANSWER

The perimeter is 11.4 units


EXPLANATION


Perimeter is the distance around the figure.

We use the distance formula,

[tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]


to determine the length of all the sides and add them.



[tex]|AB|=\sqrt{(-2--1)^2+(1-4)^2}[/tex]


[tex]|AB|=\sqrt{(-1)^2+(-3)^2}[/tex]


[tex]|AB|=\sqrt{1+9}[/tex]


[tex]|AB|=\sqrt{10} \approx 3.162[/tex]


[tex]|AC|=\sqrt{(2--1)^2+(1-4)^2}[/tex]


[tex]|AC|=\sqrt{(2+1)^2+(1-4)^2}[/tex]


[tex]|AC|=\sqrt{(3)^2+(-3)^2}[/tex]


[tex]|AC|=\sqrt{9+9}[/tex]


[tex]|AC|=\sqrt{18} \approx 4.24[/tex]


[tex]|BC|=\sqrt{(2--2)^2+(1-1)^2}[/tex]


[tex]|BC|=\sqrt{(2+2)^2+(1-1)^2}[/tex]


[tex]|BC|=\sqrt{(4)^2+(0)^2}[/tex]


[tex]|BC|=\sqrt{14}=4[/tex]


Therefore perimeter=[tex]|AB|+|BC|+|AC|[/tex]


=[tex]4.00+3.16+4.24[/tex]


=[tex]11.40[/tex] units

















Ver imagen kudzordzifrancis
ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE