Respuesta :

#1 is answered on your paper.
#2 - the formula for the volume of a sphere is [tex]\frac{4}{3} \pi r^3[/tex].  Since the diameter is 18, the radius, r, is half of that, or 9.  [tex]\frac{4}{3} \pi(9^3) = \frac{2916 \pi}{3} =972 \pi m^3[/tex]
#3 - The formula for the volume of a cone is [tex]\frac{1}{3} \pi r^2 h[/tex].  Our radius is 12 and height is 24:
[tex]\frac{1}{3} \pi(12^2)(24) = \frac{3456 \pi}{3} = 1152 \pi cm^3[/tex]
#4 - The formula for the volume of a cylinder is [tex]\pi r^2 h[/tex].  Our radius is 7 (half of the diameter, 14) and our height is 10:
[tex]\pi(7^2)(10) = 490 \pi in^3[/tex]
#5 - Another sphere with a radius of 5.1:
[tex]\frac{4}{3} \pi r^3 = \frac{4}{3} \pi(5.1^3) = \frac{530.064 \pi}{3} = 176.9 \pi mi^3[/tex]
#6 - Another cylinder with a radius of 5 and a height of 4:
[tex]\pi r^2h = \pi(5^2)(4) = 100 \pi cm^3[/tex]
#7 - Another cone with a radius of 10 (half of the diameter, 20) and a height of 20:
[tex]\frac{1}{3} \pi r^2h= \frac{1}{3} \pi(10^2)(20)= \frac{2000 \pi}{3} km^3[/tex]
#8 - Another sphere with a radius of 6 (half of the diameter of 12):
[tex]\frac{4}{3} \pi r^3 = \frac{4}{3} \pi(6^3) = \frac{864 \pi}{3} = 288 \pi cm^3[/tex]
#9 - Another cone with a radius of 4 and a height of 9:
[tex]\frac{1}{3} \pi r^2h = \frac{1}{3} \pi(4^2)(9) = \frac{144 \pi}{3} = 48 \pi m^3[/tex]
#10 - Another cone with a radius of 2 (half of the diameter of 4) and a height of 9:

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE