Respuesta :

To prove the divisibility lets expand each number first to get the complete picture of the problem

51^7 =   8.974106779 . 10^11

51^6 =  1.75962878 . 10^10

(51^7 - 51^6) =  8.974106779 . 10^11 -  1.75962878 . 10^10

                    = 8.798143901. 10^11

[tex]\frac{8.798143901. 10^11}{25}[/tex]

= 3.51925756. 10^10

That is the answer expressed in scientific notation

= 35192575600

Which means the divisibility is proven

gmany

Step-by-step explanation:

[tex]51^7-51^6=51^{6+1}-51^6\\\\\text{use}\ a^n\cdot a^m=a^{n+m}\\\\=51^6\cdot51^1-51^6\cdot1\\\\\text{use the distributive property}\ a(b-c)=ab-ac\\\\=51^6\cdot(51-1)=51^6\cdot50=51^6\cdot(2\cdot25)=25\cdot(51^6\cdot2)[/tex]

[tex]\text{One of the factors of the product is the number 25.}\\\\\bold{CONCLUSION:}\\\\\text{The whole product is divisible by 25.}[/tex]

[tex]\text{Therefore}\ 51^7-51^6\ \text{is divisible by 25.}[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE