Respuesta :
Answer:
[tex] - 6 {x}^{2} + 26xy - 28 {y}^{2} [/tex]
Step-by-step explanation:
The given expresion is:
(−2x + 4y)(3x − 7y)
We expand using the distributive property: (a+b)(c+d)=a(c+d)+b(c+d)
We apply this property to get:
[tex]( - 2x + 4y)(3x - 7y) = - 2x \times(3x - 7y) + 4y(3x - 7y)[/tex]
We expand further to obtain:
[tex] - 6 {x}^{2} + 14xy + 12xy - 28 {y}^{2} [/tex]
[tex] - 6 {x}^{2} + 26xy - 28{y}^{2} [/tex]
Answer:
[tex](-2x+ 4y)(3x - 7y)=-6x^2+26xy-28y^2[/tex]
Step-by-step explanation:
We multiply each term in the parentheses, by those of the other parenthesis:
[tex](-2x+ 4y)(3x - 7y)=(-2x)(3x)+(-2x)(-7y)+(4y)(3x)+(4y)(-7y)\\=-6x^2+14xy+12xy-28y^2[/tex]
Now, we simplify.
We have two terms that contain xy:
[tex]=-6x^2+26xy-28y^2[/tex]
Wich will be the correct simplification of the expressionn [tex](-2x+ 4y)(3x - 7y)[/tex]