Respuesta :

Area of Rectangle = 39
Total Area= 51 
Length=3/13
Width= /13
Area of Parallelogram= 12

This figure is made up of a rectangle BDFE and parallelogram ABCD.

The area of this figure= Area of BDFE+Area of ABCD

Area of parallelogram=base*height and Are of rectangle= length*Width

So, Area of ABCD= CD*BH

And, Area of BDFE=BD*DF

area of this figure= BD*DF+CD*BH

From the figure CD=4 and BH=3

To find BD, Let us apply Pythagorean theorem, [tex] hypotenuse^{2} =adjacent^{2}+ opposite^{2} [/tex], to ΔBHD

[tex] BD^{2} =HD^{2}+ BH^{2} [/tex]

HD=2 and BH=3

[tex] BD^{2} =2^{2}+ 3^{2} [/tex]

[tex] BD^{2} =4+ 9=13 [/tex]

[tex] BD=\sqrt{13} [/tex]

To find DF, Let us apply Pythagorean theorem, [tex] hypotenuse^{2} =adjacent^{2}+ opposite^{2} [/tex], to ΔBHD

[tex] DF^{2} =DG^{2}+ GF^{2} [/tex]

DG=6 and GF=9

[tex] DF^{2} =6^{2}+ 9^{2} [/tex]

[tex] DF^{2} =36+ 81=117 [/tex]

[tex] BD=\sqrt{117}=3\sqrt{13} [/tex]

[tex] BD=\sqrt{13} and DF=3\sqrt{13} [/tex]

area of this figure= BD*DF+CD*BH

area of this figure= [tex] \sqrt{13} [/tex]*3[tex] \sqrt{13} [/tex]+4*3

area of this figure=13*3+12

area of this figure=39+12=51

Area of this figure=51 square units

Ver imagen FelisFelis
ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE