Respuesta :

First list all the positive and negative factors of the constant term in the expression: ±(1,2,3,4,6,12) these will be the values for "p"

Second list all the positive and negative factors of the leading coefficient:
±(1,3) these will be the values for "q"

Now list all the possible values of [tex] \frac{p}{q} [/tex] these will be the possible rational zeros of the polynomial function:
±([tex] \frac{1}{1} , \frac{1}{3} , \frac{2}{1} , \frac{2}{3} , \frac{3}{1} , \frac{3}{3}, \frac{4}{1} , \frac{4}{3} , \frac{6}{1} , \frac{6}{3} , \frac{12}{1} , \frac{12}{3} [/tex])

these can be reduced to the following list:
±(1,[tex] \frac{1}{3} [/tex], 2, [tex] \frac{2}{3} [/tex], 3, 4, [tex] \frac{4}{3} [/tex], 6, 12

This list represents the possible rational zeros of the function. You can then use synthetic division to narrow down the actual roots of the function.

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE