the so-called pythagorean triple will just be the distance between both points,
[tex]\bf ~~~~~~~~~~~~\textit{distance between 2 points}\\ \quad \\
\begin{array}{ccccccccc}
&&x_1&&y_1&&x_2&&y_2\\
% (a,b)
&&(~{{ 5}} &,&{{ 4}}~)
% (c,d)
&&(~{{ 1}} &,&{{ \frac{1}{2}}}~)
\end{array}\qquad
% distance value
d = \sqrt{({{ x_2}}-{{ x_1}})^2 + ({{ y_2}}-{{ y_1}})^2}[/tex]
[tex]\bf d=\sqrt{(1-5)^2+\left( \frac{1}{2}-4 \right)^2}\implies d=\sqrt{(-4)^2+\left( -\frac{7}{2} \right)^2}
\\\\\\
d=\sqrt{16+\frac{7^2}{2^2}}\implies d=\sqrt{16+\frac{49}{4}}\implies d=\sqrt{\frac{64+49}{4}}
\\\\\\
d=\sqrt{\frac{113}{4}}\implies d=\cfrac{\sqrt{113}}{\sqrt{4}}\implies d=\cfrac{\sqrt{113}}{2}[/tex]