[tex]\bf \qquad \textit{Compound Interest Earned Amount}
\\\\
A=P\left(1+\frac{r}{n}\right)^{nt}
\quad
\begin{cases}
A=\textit{accumulated amount}\to &\$5000\\
P=\textit{original amount deposited}\\
r=rate\to 5\%\to \frac{5}{100}\to &0.05\\
n=
\begin{array}{llll}
\textit{times it compounds per year}\\
\textit{quarterly, four times}
\end{array}\to &4\\
t=years\to &7
\end{cases}
\\\\\\
5000=P\left(1+\frac{0.05}{4}\right)^{4\cdot 7}\implies 5000=P(1.0125)^{28}\\\\\\ \cfrac{5000}{(1.0125)^{28}}=P[/tex]