Respuesta :

<ACB = 1/2(100 - 42)
<ACB = 1/2(58)
<ACB = 29

answer is A. 29

Answer:

The correct option is B.

Step-by-step explanation:

From the given graph it is clear that the measure of arc AB is 100°.

Let the center of circle of the circle be O.

According to the central angle theorem, the angled inscribed on a circle is half of its central angle.

Using central angle theorem,

[tex]\angle ABX=\frac{1}{2}\times \angle AOX[/tex]

[tex]42^{\circ}=\frac{1}{2}\times \angle AOX[/tex]

Multiply 2 on both the sides.

[tex]42^{\circ}\times 2=\angle AOX[/tex]

[tex]84^{\circ}=\angle AOX[/tex]

The central angle of arc AX is 84°. So the measure of arc AX is 84°.

Using tangent secant theorem,

[tex]\text{Angle between tangent and secant}=\frac{1}{2}(\text{Major arc - Minor arc})[/tex]

[tex]\angle ACB=\frac{1}{2}(Arc(AB)-Arc(AX))[/tex]

[tex]\angle ACB=\frac{1}{2}(100^{\circ}-84^{\circ})[/tex]

[tex]\angle ACB=\frac{1}{2}(16^{\circ})[/tex]

[tex]\angle ACB=8^{\circ}[/tex]

Therefore the measure of angle ACB is 8° Therefore the correct option is B.

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE