Which translation maps the vertex of the graph of the function f(x) = x2 onto the vertex of the function g(x) = x2 + 2x +1?

right 1 unit
left 1 unit
right 2 units
left 2 units

Respuesta :

Answer:

Option B is correct

Left 1 unit.

Explanation:

According to the graph theory of transformation:

y = f(x+k)=[tex]\left \{ {{k>0 shift graph of y= f(x) left k unit} \atop {k<0} shift graph of y= f(x) right |k| unit} \right.[/tex]

Given the parent function: [tex]f(x)=x^2[/tex]

and the function [tex]g(x)=x^2+2x+1[/tex]

we can write it as:

g(x)= [tex](x+1)^2[/tex]   [ ∴[tex](a+b)^2 = a^2+2ab+b^2[/tex] ]

Therefore, vertex of the graph of the function [tex]g(x)=(x+1)^2[/tex] is 1 units to the left of the vertex of the graph of the function [tex]f(x)=x^2[/tex] .




Ver imagen OrethaWilkison

Answer:

Shift 1 unit left

B is correct

Step-by-step explanation:

Given: The vertex of f(x) shift to g(x)

[tex]f(x)=x^2[/tex]

Vertex of f(x): (0,0)

[tex]g(x)=x^2+2x+1[/tex]

Vertex form: [tex]y=a(x-h)^2+k[/tex]

[tex]g(x)=(x+1)^2[/tex]

Vertex of g(x): (-1,0)

[tex](0,0)\rightarrow (-1,0)[/tex]

Only x-coordinate change and y-coordinate remain same.

[tex]0\rightarrow -1[/tex]

Hence, The vertex of f(x) shift 1 unit left to get vertex of g(x)

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE