Respuesta :
Answer:
Option B is correct
Left 1 unit.
Explanation:
According to the graph theory of transformation:
y = f(x+k)=[tex]\left \{ {{k>0 shift graph of y= f(x) left k unit} \atop {k<0} shift graph of y= f(x) right |k| unit} \right.[/tex]
Given the parent function: [tex]f(x)=x^2[/tex]
and the function [tex]g(x)=x^2+2x+1[/tex]
we can write it as:
g(x)= [tex](x+1)^2[/tex] [ ∴[tex](a+b)^2 = a^2+2ab+b^2[/tex] ]
Therefore, vertex of the graph of the function [tex]g(x)=(x+1)^2[/tex] is 1 units to the left of the vertex of the graph of the function [tex]f(x)=x^2[/tex] .

Answer:
Shift 1 unit left
B is correct
Step-by-step explanation:
Given: The vertex of f(x) shift to g(x)
[tex]f(x)=x^2[/tex]
Vertex of f(x): (0,0)
[tex]g(x)=x^2+2x+1[/tex]
Vertex form: [tex]y=a(x-h)^2+k[/tex]
[tex]g(x)=(x+1)^2[/tex]
Vertex of g(x): (-1,0)
[tex](0,0)\rightarrow (-1,0)[/tex]
Only x-coordinate change and y-coordinate remain same.
[tex]0\rightarrow -1[/tex]
Hence, The vertex of f(x) shift 1 unit left to get vertex of g(x)