Respuesta :

The area of D is given by:

[tex] \int\limits \int\limits {1} \, dA = \int\limits_0^7 \int\limits_0^{x^2} {1} \, dydx \\ \\ = \int\limits^7_0 {x^2} \, dx =\left. \frac{x^3}{3} \right|_0^7= \frac{343}{3} [/tex]

The average value of f over D is given by:

[tex] \frac{1}{ \frac{343}{3} } \int\limits^7_0 \int\limits^{x^2}_0 {4x\sin(y)} \, dydx = -\frac{3}{343} \int\limits^7_0 {4x\cos(x^2)} \, dx \\ \\ =-\frac{3}{343} \int\limits^{49}_0 {2\cos(t)} \, dt=-\frac{6}{343} \left[\sin(t)\right]_0^{49} \, dt=-\frac{6}{343}\sin49[/tex]
ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE