(a + b)2 = 1a^2 + 2ab + 1b^2
(a + b)^3 = 1a^3 + 3a^2b + 3ab^2 + 1b^3

How are binomial expansions related to Pascal’s triangle?

Respuesta :

Consider the binomial [tex]\displaystyle{ (a+b)^\displaystyle{n[/tex],

where n=0, 1, 2, 3, ...

For example 

[tex]\displaystyle{ (a+b)^0=1[/tex]

[tex]\displaystyle{(a+b)^1=1a+1b[/tex]

[tex]\displaystyle{(a+b)^2=1a^2+2ab+1b^2[/tex]

[tex]\displaystyle{ (a + b)^3 = 1a^3 + 3a^2b + 3ab^2 + 1b^3[/tex]
...
...


Consider the Pascal's triangle, as shown in the picture, where the very first row is denoted by row 0, the second by row 1, the third by row 2 and so on...


We notice that the coefficients of the expansion of [tex](a+b)^n[/tex], are the entries in the [tex]n^{th}[/tex] row of Pascal's triangle.


Ver imagen eco92
iriesm

Answer:

The coefficients of the terms come from rows of the triangle.

If the exponent is n, look at the entries in row n.

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE