Respuesta :

The answer is 512in^3

we know that

The volume of the ball (sphere) is equal to

[tex]V=\frac{4}{3} \pi r^{3}[/tex]

In this problem we have

[tex]V=4.19\ in^{3}[/tex]

Find the radius of the sphere

[tex]r=\sqrt[3]{\frac{3V}{4\pi}}[/tex]

Substitute the value of V

[tex]r=\sqrt[3]{\frac{3*4.19}{4\pi}}=1\ in[/tex]

for the calculation of the total volume I will assume that each ball is a cube

The volume of each ball is

[tex]V=b^{3}[/tex]

where

b is the diameter of the ball

[tex]b=1*2=2\ in[/tex]

Substitute  

[tex]V=2^{3}=8\ in^{3}[/tex] ------> volume of each ball in the shape of cube

so

Multiply by [tex]64[/tex]

[tex]64*8=512\ in^{3}[/tex]

therefore

the answer is

[tex]512\ in^{3}[/tex]


ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE