[tex]w(s,t)=f(u(s,t),v(s,t))[/tex]
From the given set of conditions, it's likely that you are asked to find the values of [tex]\dfrac{\partial w}{\partial s}[/tex] and [tex]\dfrac{\partial w}{\partial t}[/tex] at the point [tex](s,t)=(1,0)[/tex].
By the chain rule, the partial derivative with respect to [tex]s[/tex] is
[tex]\dfrac{\partial w}{\partial s}=\dfrac{\partial f}{\partial u}\dfrac{\partial u}{\partial s}+\dfrac{\partial f}{\partial v}\dfrac{\partial v}{\partial s}[/tex]
and so at the point [tex](1,0)[/tex], we have
[tex]\dfrac{\partial w}{\partial s}\bigg|_{(s,t)=(1,0)}=\dfrac{\partial f}{\partial
u}\bigg|_{(u,v)=(-6,-8)}\dfrac{\partial u}{\partial s}\bigg|_{(s,t)=(1,0)}+\dfrac{\partial f}{\partial
v}\bigg|_{(u,v)=(-6,-8)}\dfrac{\partial v}{\partial s}\bigg|_{(s,t)=(1,0)}[/tex]
[tex]\dfrac{\partial w}{\partial s}\bigg|_{(s,t)=(1,0)}=(-1)(5)+(2)(-8)=-21[/tex]
Similarly, the partial derivative with respect to [tex]t[/tex] would be found via
[tex]\dfrac{\partial w}{\partial t}\bigg|_{(s,t)=(1,0)}=\dfrac{\partial f}{\partial
u}\bigg|_{(u,v)=(-6,-8)}\dfrac{\partial u}{\partial t}\bigg|_{(s,t)=(1,0)}+\dfrac{\partial f}{\partial
v}\bigg|_{(u,v)=(-6,-8)}\dfrac{\partial v}{\partial t}\bigg|_{(s,t)=(1,0)}[/tex]
[tex]\dfrac{\partial w}{\partial t}\bigg|_{(s,t)=(1,0)}=(-1)(7)+(2)(6)=5[/tex]