Answer:
103.1 degrees
Step-by-step explanation:
The area of the parallelogram is equal to base multiplied by the perpendicular height of the parallelogram. Let h be the perpendicular height of the parallelogram and α be the acute angle of the parallelogram.
[tex](base)(h)=1950\\91h=1950\\h=\frac{150}{7} \\\\sin\alpha =\frac{opposite}{hypotenuse} \\\\sin\alpha =\frac{h}{22} \\\\sin\alpha =\frac{150}{(7)(22)} \\\\sin\alpha =\frac{75}{77} \\\\\alpha =76.913 (5sf)\\\\[/tex]
Therefore, obtuse angle
[tex]=180-76.913\\\\=103.1 deg (1 dp)[/tex]