The area of a parallelogram is a 1950 and the lengths of its sides are 91 and 22 determine to the nearest tenth of a degree the measure of the obtuse angle of the parallelogram

Respuesta :

Answer:

103.1 degrees

Step-by-step explanation:

The area of the parallelogram is equal to base multiplied by the perpendicular height of the parallelogram. Let h be the perpendicular height of the parallelogram and α be the acute angle of the parallelogram.

[tex](base)(h)=1950\\91h=1950\\h=\frac{150}{7} \\\\sin\alpha =\frac{opposite}{hypotenuse} \\\\sin\alpha =\frac{h}{22} \\\\sin\alpha =\frac{150}{(7)(22)} \\\\sin\alpha =\frac{75}{77} \\\\\alpha =76.913 (5sf)\\\\[/tex]

Therefore, obtuse angle

[tex]=180-76.913\\\\=103.1 deg (1 dp)[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE