Respuesta :

Answer:

[tex]JN \approx 6.86\;\; or\;\; JN = \dfrac{144}{21}[/tex]

Step-by-step explanation:

There are two different ways we could find segment JN.  Since trapezoid LMPN is similar to LMKJ, we can create a proportion using the given equality statement to find segment JN.

       Given proportion:

       [tex]\displaystyle \frac{LJ}{JN} =\frac{MK}{KP}[/tex]

       Substitute known values:

       [tex]\displaystyle \frac{16-JN}{JN} =\frac{12}{9}[/tex]

       Cross multiply:

       [tex]\displaystyle JN * 12 = 9*(16-JN)[/tex]

       [tex]\displaystyle 12JN = 144-9JN[/tex]

       Add 9JN to both sides of the equation:

       [tex]\displaystyle 21JN = 144[/tex]

       Divide both sides of the equation by 21:

       [tex]\displaystyle JN = 6.8571[/tex]

Again, since trapezoid LMPN is similar to LMKJ, we can create a proportion. However, this time we will use [tex]\frac{LN}{JN} =\frac{MP}{KP}[/tex], we know this is true since the figures are similar.

       Proportion:

       [tex]\displaystyle \frac{LN}{JN} =\frac{MP}{KP}[/tex]

       Substitute known values:

       [tex]\displaystyle \frac{16}{JN} =\frac{12+9}{9}[/tex]

       Addition:

       [tex]\displaystyle \frac{16}{JN} =\frac{21}{9}[/tex]

       Cross multiply:

       [tex]21 * JN = 16 * 9[/tex]

       [tex]21JN = 144[/tex]

       Divide both sides of the equation by 21:

       [tex]\displaystyle JN = 6.8571[/tex]

You can see that both of these methods produce the same result, it depends upon which way you want to go about it.

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE