Respuesta :
To find two points on the graph of the function h(x) = -5/6x^3 within the given grid of -10,10 times-10,10, we can choose x-values within this range and calculate the corresponding y-values using the function.
1. Let's start by selecting x = -2: Substitute x = -2 into the function: \( h(-2) = -5/6(-2)^3 = -5/6(-8) = 40/6 = 20/3.Therefore, the point A on the graph is (-2, 20/3).
2. Next, let's choose x = 3: Substitute x = 3 into the function: \( h(3) = -5/6(3)^3 = -5/6(27) = -135/6= -45/2.Thus, the point B on the graph is (3, -45/2).
Therefore, the two points on the graph of the function within the grid of -10,10 times -10,10are: A: (-2, 20/3) B: (3, -45/2) These points can be plotted on a graph to visualize the function's behavior within the specified range.
Hope this helps! :D
Answer:
A: [tex](2, -6.6667)[/tex]
B: [tex](-2, 6.6667)[/tex]
Step-by-step explanation:
To find two points on the graph of:
[tex] h(x) = -\dfrac{5}{6}x^3 [/tex]
within the given grid [tex][-10,10] \times [-10,10][/tex], we can simply substitute the [tex]x[/tex] values and compute the corresponding [tex]y[/tex] values.
We can select variables between -10 to 10.
So,
Let's choose [tex]x = 2[/tex] and [tex]x = -2[/tex] .
For [tex]x = 2[/tex]:
[tex] h(2) = -\dfrac{5}{6}(2)^3 \\\\ = -\dfrac{5}{6}(8) \\\\ = -\dfrac{40}{6} \\\\ = -\dfrac{20}{3} \\\\ = - 6.6667 [/tex]
For [tex]x = -2[/tex]:
[tex] h(-2) = -\dfrac{5}{6}(-2)^3 \\\\ = -\dfrac{5}{6}(-8) \\\\= -\dfrac{-40}{6} \\\\= \dfrac{20}{3}\\\\ = 6.6667 [/tex]
So, the coordinates of the points are:
A: [tex](2, -6.6667)[/tex]
B: [tex](-2, 6.6667)[/tex]
These points indeed fall within the given grid.