GIVING 100 POINTS

Rearrange the formula to make a the subject. Please explain the process, I don’t need only the answers

GIVING 100 POINTS Rearrange the formula to make a the subject Please explain the process I dont need only the answers class=

Respuesta :

a) r = (2a + c)/a

  • ra = 2a + c
  • ra - 2a = c
  • a(r - 2) = c
  • a = c/(r -2)

b) y = (4 - 3xa)/(1 + a)

  • y(1 + a) = 4 - 3xa
  • y + ya = 4 - 3xa
  • ya + 3xa = 4 - y
  • a(y + 3x) = 4 - y
  • a = (4 -y)/(y + 3x)
  • a = (4 -y)/(3x + y)

c) d = (5(3 - 2a))/ba

  • dba = 5(3 - 2a)
  • dba = 15 - 10a
  • 10a + dba = 15
  • a(10 + db) = 15
  • a = 15/(10 + db)
  • a = 15/(db + 10)

d) b = (a - c^2)/(3(a + 1)

  • b = (a - c^2)/(3a + 3)
  • 3ab + 3b = a - c^2
  • 3ab - a = -3b - c^2
  • -(a - 3ab) = -(3b + c^2)
  • a - 3ab = 3b + c^2
  • a(1 - 3b) = 3b + c^2
  • a = (3b + c^2)/(1 - 3b)

_______

tysm msm<3

msm555

Answer:

a) [tex]a = \dfrac{c}{r - 2}[/tex]

b)[tex]a = \dfrac{4 - y}{3x + y}[/tex]

d) [tex] a = \dfrac{15}{db + 10} [/tex]

e) [tex] a = \dfrac{3b + c^2}{1 - 3b} [/tex]

Step-by-step explanation:

Let's rearrange each equation to isolate [tex]a[/tex] as the subject.

a) Given: [tex]r = \dfrac{2a+c}{a}[/tex]

Multiply both sides by [tex]a[/tex]:

[tex]r \cdot a = 2a + c[/tex]

Now, subtract [tex]2a[/tex] from both sides:

[tex]r \cdot a - 2a = c[/tex]

Factor out [tex]a[/tex] on the left side:

[tex]a(r - 2) = c[/tex]

Finally, divide both sides by [tex]r - 2[/tex]:

[tex]a = \dfrac{c}{r - 2}[/tex]

[tex]\dotfill[/tex]

b) Given: [tex]y = \dfrac{4 - 3xa}{1 + a}[/tex]

Multiply both sides by [tex]1 + a[/tex]:

[tex]y(1 + a) = 4 - 3xa[/tex]

Expand the left side:

[tex]y + ya = 4 - 3xa[/tex]

Now, move the term [tex]3xa[/tex] to the left side:

[tex]3xa + ya = 4 - y[/tex]

Factor out [tex]a[/tex] from the left side:

[tex]a(3x + y) = 4 - y[/tex]

Divide both sides by [tex]3x + y[/tex]:

[tex]a = \dfrac{4 - y}{3x + y}[/tex]

[tex]\dotfill[/tex]

d) Given: [tex]d = \dfrac{5(3-2a)}{ba}[/tex]

First, clear the fraction by multiplying both sides by [tex]ba[/tex]:

[tex] d \times ba = 5(3-2a) [/tex]

Expand the right side:

[tex] dba = 15 - 10a [/tex]

Move the term with [tex]a[/tex] to one side by adding [tex]10a[/tex] to both sides:

[tex] dba + 10a = 15 [/tex]

Factor out [tex]a[/tex] from the left side:

[tex] a(db + 10) = 15 [/tex]

Finally, solve for [tex]a[/tex] by dividing both sides by [tex](db + 10)[/tex]:

[tex] a = \dfrac{15}{db + 10} [/tex]

[tex]\dotfill[/tex]

e) Given: [tex] b = \dfrac{a - c^2}{3(a+1)} [/tex]

Multiply both sides of the equation by [tex] 3(a + 1) [/tex] to eliminate the denominator:

[tex] b \times 3(a + 1) = a - c^2 [/tex]

[tex] 3b(a + 1) = a - c^2 [/tex]

Expand the left side:

[tex] 3ab + 3b = a - c^2 [/tex]

Move all terms involving [tex] a [/tex] to one side and other terms to the other side:

[tex] a - 3ab = 3b + c^2 [/tex]

Factor out [tex] a [/tex] on the left side:

[tex] a(1 - 3b) = 3b + c^2 [/tex]

Divide both sides by [tex] (1 - 3b) [/tex] to isolate [tex] a [/tex]:

[tex] a = \dfrac{3b + c^2}{1 - 3b} [/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE