Respuesta :

Step-by-step explanation:

0.25 = 1/4 = 2^-2

128 ≈ 2⁷ = a1

2^-2 = 2⁷/2⁹

therefore,

0.25 = a9

the 9th term.

Answer:

0.25 is the 10th term.

Step-by-step explanation:

First, let's determine whether it is an Arithmetic Sequence or a Geometric Sequence:

  • Arithmetic Sequence: the difference is constant, which means U₂-U₁ = U₃-U₂ = U₄-U₃ = ...
  • Geometric Sequence: the ratio is constant, which means U₂÷U₁ = U₃÷U₂ = U₄÷U₃ = ...

Given:

  • U₁ = 128
  • U₂ = 64
  • U₃ = 32

Since U₂-U₁ ≠ U₃-U₂, but U₂÷U₁ = U₃÷U₂, therefore it is a Geometric Sequence with formula:

[tex]\boxed{U_n=U_1\cdot r^{(n-1)}}[/tex]

Now, we are going to find the ratio (r)

[tex]U_2=U_1\cdot r^{(2-1)}[/tex]

[tex]64=128\cdot r[/tex]

[tex]\displaystyle r=\frac{64}{128}[/tex]

[tex]\bf \displaystyle r=\frac{1}{2}[/tex]

The n-term of 0.25:

[tex]U_n=U_1\cdot r^{(n-1)}[/tex]

[tex]0.25=128\cdot \frac{1}{2} ^{(n-1)}[/tex]

[tex]\displaystyle\frac{0.25}{128} =\frac{1}{2} ^{(n-1)}[/tex]

[tex]\displaystyle\frac{0.25}{128}\times\frac{4}{4} =\frac{1}{2} ^{(n-1)}[/tex]

[tex]\displaystyle\frac{1}{512} =\frac{1}{2} ^{(n-1)}[/tex]

[tex]\displaystyle\frac{1}{2^9} =\frac{1}{2} ^{(n-1)}[/tex]

[tex]\displaystyle\left(\frac{1}{2}\right)^{9} =\frac{1}{2} ^{(n-1)}[/tex]

[tex]9=n-1[/tex]

[tex]\bf n=10[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE