contestada

3. Mr. Tatto (m = 110 kg) runs down the hall with a velocity of 6 m/s. If Mr. Ludwig stops him, determine Mr. Tattos change in momentum. ​

Respuesta :

Answer:

The change in momentum is

[tex] - 600kg.m/s[/tex]

Explanation:

Greetings!!!

To determine Mr. Tatto's change in momentum, we use the formula:

Change in momentum = Final momentum - Initial momentum

Given:

- Mass of Mr. Tatto (m) = 110 kg

- Initial velocity of Mr. Tatto (u) = 6 m/s

- Final velocity of Mr. Tatto (v) = 0 m/s (since he stops)

First, calculate the initial momentum (P_initial) using the formula:

Initial momentum = Mass × Initial velocity

= m × u

Plugging in the values:

Initial momentum = 110 kg × 6 m/s

= 660 kg·m/s

Now, calculate the final momentum (P_final) using the same formula:

Final momentum = Mass × Final velocity

= m × v

Plugging in the values:

Final momentum = 110 kg × 0 m/s

= 0 kg·m/s

Now, find the change in momentum:

Change in momentum = Final momentum - Initial momentum

= P_final - P_initial

= 0 kg·m/s - 660 kg·m/s

= -660 kg·m/s

So, Mr. Tatto's change in momentum is -660 kg·m/s. The negative sign indicates that the direction of the change in momentum is opposite to the initial momentum, which means he's stopped, hence the reversal in momentum.

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE