Respuesta :

Answer:

sec x + tan x

Step-by-step explanation:

using the trigonometric identities

• 1 - sin²x = cos²x

• [tex]\frac{1}{cosx}[/tex] = sec x

• [tex]\frac{sinx}{cosx}[/tex] = tan x

given

[tex]\frac{cosx}{1-sinx}[/tex]

multiply numerator and denominator by (1 + sin x )

= [tex]\frac{cosx(1+sinx)}{(1-sinx)(1+cosx)}[/tex] ← expand denominator using FOIL

= [tex]\frac{cosx(1+sinx)}{1-sin^2x}[/tex]

= [tex]\frac{cosx(1+sinx)}{cos^2x}[/tex] ( cancel cos x on numerator and denominator )

= [tex]\frac{1+sinx}{cosx}[/tex]

= [tex]\frac{1}{cosx}[/tex] + [tex]\frac{sinx}{cosx}[/tex]

= sec x + tan x

Answer:

[tex]\huge{\text{\sf sec(x)+tan(x)}}[/tex]

Explanation:

[tex]\sf Given: \dfrac{cos(x)}{1-sin(x)}[/tex]

Rationalizing the denominator.

To rationalize an fraction such as a/(b+c) multiply both numerator and denominator with (b-c). Such as: [tex]\sf \frac{a}{(b+c)} \cdot \frac{b-c}{b-c}[/tex]

So if you apply the same here:

[tex]\rightarrow \sf \dfrac{cos(x)}{1-sin(x)} \cdot \dfrac{1+sin(x)}{1+sin(x)}[/tex]

[tex]\rightarrow \sf \dfrac{cos(x)(1+sin(x))}{1^2-sin^2(x)}[/tex]

[tex]\rightarrow \sf \dfrac{cos(x)+cos(x)sin(x)}{1-sin^2(x)}[/tex]

we know 1 - sin^2(x) = cos^2(x)

[tex]\rightarrow \sf \dfrac{cos(x)+cos(x)sin(x)}{cos^2(x)}[/tex]

breakdown

[tex]\rightarrow \sf \dfrac{cos(x)}{cos^2(x)}+\dfrac{cos(x)sin(x)}{cos^2(x)}[/tex]

simplify

[tex]\rightarrow \sf \dfrac{1}{cos(x)}+\dfrac{sin(x)}{cos(x)}[/tex]

1/cos(x) = sec(x), sin(x)/cos(x) = tan(x)

[tex]\rightarrow \sf sec(x)+tan(x)[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE