Answer:
Volume = 262 m³
Step-by-step explanation:
To find the volume of a cone, we can use the formula:
[tex] \textsf{Volume} = \dfrac{1}{3} \pi r^2 h [/tex]
where:
- [tex] r [/tex] is the radius of the base,
- [tex] h [/tex] is the height.
Given that the diameter ([tex] d [/tex]) is 10 m, the radius ([tex] r [/tex]) is half of the diameter.
So [tex] r = \dfrac{d}{2} = \dfrac{10}{2} = 5 [/tex] meters.
Now, substitute the values into the formula:
[tex] \textsf{Volume} = \dfrac{1}{3} \pi (5^2) \times 10 [/tex]
[tex] \textsf{Volume} = \dfrac{1}{3} \pi \times 25 \times 10 [/tex]
[tex] \textsf{Volume} = \dfrac{250}{3} \pi [/tex]
[tex] \textsf{Volume} = 83.33333 \dots \times 3.141592654 [/tex]
[tex] \textsf{Volume} \approx 261.7993878 [/tex]
[tex] \textsf{Volume} = 262 \, \textsf{m}^3 \textsf{(in nearest whole number)}[/tex]
So, the volume of the cone is approximately [tex] 262 \, \textsf{m}^3 [/tex].