contestada

What is the average gravitational force between the Sun (1.99x10^30kg) and the planet Jupiter (1.90x10^27kg) if the mean distance between them is (7.78x10^11m)? SHOW WORK
1. 4.17x10^23N
2. 6.25x10^33N
3. 3.24x10^35N
4. 4.86x10^45N

(reupload with more point reward)

Respuesta :

The formula for gravitational force is given by:

F = (G * m1 * m2) / r^2

where:

F = gravitational force

G = gravitational constant (6.67430 x 10^-11 N(m/kg)^2)

m1 = mass of the Sun (1.99 x 10^30 kg)

m2 = mass of Jupiter (1.90 x 10^27 kg)

r = distance between the Sun and Jupiter (7.78 x 10^11 m)

Plugging in the values:

F = (6.67430 x 10^-11 N(m/kg)^2 * (1.99 x 10^30 kg) * (1.90 x 10^27 kg)) / (7.78 x 10^11 m)^2

F = (6.67430 x 10^-11 N(m/kg)^2 * 3.781 x 10^57 kg^2) / 6.0484 x 10^23 m^2

F = 25.231 x 10^46 N / 6.0484 x 10^23

F = 4.17 x 10^23 N

So, the average gravitational force between the Sun and Jupiter is approximately 4.17 x 10^23N.

Therefore, the correct answer is: 1. 4.17x10^23N

msm555

Answer:

1) [tex]4.17 \times 10^{23} \, \textsf{N}[/tex]

Explanation:

To calculate the average gravitational force between the Sun and the planet Jupiter, we can use Newton's law of universal gravitation:

[tex] F = \dfrac{{G \cdot m_1 \cdot m_2}}{{r^2}} [/tex]

Where:

[tex] F [/tex] is the gravitational force,

  • [tex] G [/tex] is the gravitational constant ([tex]6.67 \times 10^{-11} \, \textsf{N} \cdot \textsf{m}^2/\textsf{kg}^2[/tex]),
  • [tex] m_1 [/tex] and [tex] m_2 [/tex] are the masses of the two objects,
  • [tex] r [/tex] is the distance between the centers of the two objects.

Given:

  • Mass of the Sun ([tex] m_1 [/tex]) [tex]= 1.99 \times 10^{30} \, \textsf{kg} [/tex]
  • Mass of Jupiter ([tex] m_2 [/tex]) [tex]= 1.90 \times 10^{27} \, \textsf{kg} [/tex]
  • Mean distance ([tex] r [/tex]) [tex]= 7.78 \times 10^{11} \, \textsf{m} [/tex]
  • Gravitational constant [tex] G = 6.67 \times 10^{-11} \, \textsf{N} \cdot \textsf{m}^2/\textsf{kg}^2 [/tex]

Substitute the given values into the formula:

[tex] F = \dfrac{{6.67 \times 10^{-11} \times (1.99 \times 10^{30}) \times (1.90 \times 10^{27})}}{{(7.78 \times 10^{11})^2}} [/tex]

[tex] F = \dfrac{{6.67 \times 1.99 \times 1.90 \times 10^{30+27-11}}}{{7.78^2 \times 10^{22}}} [/tex]

[tex] F = \dfrac{{6.67 \times 1.99 \times 1.90}}{{7.78^2}} \times 10^{46-22} [/tex]

[tex] F = \dfrac{{6.67 \times 1.99 \times 1.90}}{{7.78^2}} \times 10^{24} [/tex]

[tex] F = \dfrac{{25.21927}}{{60.5284}} \times 10^{24} [/tex]

[tex] F \approx 0.4166518527 \times 10^{24} \, \textsf{N} [/tex]

[tex] F \approx 4.166518527 \times 10^{23} \, \textsf{N} [/tex]

[tex] F \approx 4.17 \times 10^{23} \, \textsf{N} [/tex]

Therefore, the average gravitational force between the Sun and Jupiter is approximately [tex]4.17 \times 10^{23} \, \textsf{N}[/tex].

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE