G find the value of the line integral. f · dr c (hint: if f is conservative, the integration may be easier on an alternative path.) f(x,y) = yexyi + xexyj

Respuesta :

Assuming the field is given by

[tex]\mathbf f(x,y)=ye^{xy}\,\mathbf i+xe^{xy}\,\mathbf j[/tex]

then because [tex]\mathbf f(x,y)[/tex] is continuous, there is some scalar potential function [tex]f(x,y)[/tex] such that [tex]\nabla f(x,y)=\mathbf f(x,y)[/tex], i.e. the vector field is conservative. So

[tex]\dfrac{\partial f(x,y)}{\partial x}=ye^{xy}[/tex]
[tex]\displaystyle\int\dfrac{\partial f}{\partial x}=\dfrac{ye^{xy}}y+g(y)=e^{xy}+g(y)[/tex]

[tex]\dfrac{\partial f(x,y)}{\partial y}=\dfrac{\partial(e^{xy}+g(y))}{\partial y}[/tex]
[tex]xe^{xy}=xe^{xy}+g'(y)[/tex]
[tex]0=g'(y)[/tex]
[tex]\implies g(y)=C[/tex]

[tex]\implies f(x,y)=e^{xy}+C[/tex]

The value of the line integral then depends on only the endpoints of the path and the gradient theorem (fundamental theorem of calculus for line integrals) applies.
ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE