NEED HELP ASAP NO WRONG ANSWERS

What are the 2 answers? Solve for x and choose 2 correct statements:

• x= 2
• x= 1
• x= 2 is extraneous
• x= -1

NEED HELP ASAP NO WRONG ANSWERS What are the 2 answers Solve for x and choose 2 correct statements x 2 x 1 x 2 is extraneous x 1 class=

Respuesta :

Answer:

C) x = 2 is extraneous

D) x = -1

Step-by-step explanation:

Given equation:

[tex]\sqrt{x+2}+1=\sqrt{3-x}[/tex]

Subtract 1 from both sides of the equation:

[tex]\sqrt{x+2} = \sqrt{3 - x} - 1[/tex]

Square both sides:

[tex](\sqrt{x+2})^2 = (\sqrt{3 - x} - 1)^2[/tex]

Simplify both sides, applying the Perfect Squares formula, (a - b)² = a² - 2ab + b², to the right side:

[tex]x+2=(\sqrt{3-x})^2-2\sqrt{3-x}+1[/tex]

[tex]x+2=3-x-2\sqrt{3-x}+1[/tex]

[tex]x+2=4-x-2\sqrt{3-x}[/tex]

Isolate the square root term:

[tex]2\sqrt{3-x}=4-x-x-2[/tex]

[tex]2\sqrt{3-x}=2-2x[/tex]

Divide both sides by 2:

[tex]\sqrt{3-x}=1-x[/tex]

Square both sides again:

[tex](\sqrt{3-x})^2=(1-x)^2[/tex]

[tex]3-x=1-2x+x^2[/tex]

Rearrange into the form ax² + bx + c = 0:

[tex]x^2-x-2=0[/tex]

Factor the quadratic:

[tex]x^2-2x+x-2=0[/tex]

[tex]x(x-2)+1(x-2)=0[/tex]

[tex](x+1)(x-2)=0[/tex]

Apply the zero product property to find the solutions:

[tex]x+1=0 \implies x=-1[/tex]

[tex]x-2=0 \implies x=2[/tex]

So, the solutions are x = -1 and x = 2. However, we need to check if these solutions satisfy the original equation, as sometimes extraneous solutions may occur when squaring both sides of an equation.

Substitute x = -1 into the original equation:

[tex]\begin{aligned}\sqrt{(-1)+2}+1&\overset{?}=\sqrt{3-(-1)}\\\sqrt{1}+1&\overset{?}=\sqrt{4}\\1+1&\overset{?}=2\\2&=2\end{aligned}[/tex]

Substitute x = 2 into the original equation:

[tex]\begin{aligned}\sqrt{2+2}+1&\overset{?}=\sqrt{3-2}\\\sqrt{4}+1&\overset{?}=\sqrt{1}\\2+1&\overset{?}=1\\3&\neq1\end{aligned}[/tex]

By testing both x = -1 and x = 2 in the original equation, we find that only x = -1 is a valid solution and x = 2 is extraneous.

Answer:

[tex]\Large \textsf{Read below}[/tex]

Step-by-step explanation:

[tex]\Large \text{$ \sf \sqrt{x + 2} + 1= \sqrt{3 - x} $}[/tex]

[tex]\Large \text{$ \sf [\:\sqrt{x + 2} + 1\:]^2 = [\:\sqrt{3 - x}\:]^2 $}[/tex]

[tex]\Large \text{$ \sf x + 2 + 2\sqrt{x + 2} + 1 = 3 - x $}[/tex]

[tex]\Large \text{$ \sf 2\sqrt{x + 2} = -2x $}[/tex]

[tex]\Large \text{$ \sf [\:2\sqrt{x + 2}\:]^2 = [\:-2x\:]^2 $}[/tex]

[tex]\Large \text{$ \sf 4x + 8 = 4x^2 $}[/tex]

[tex]\Large \text{$ \sf x^2 - x - 2 = 0 $}[/tex]

[tex]\Large \text{$ \sf x^2 - 2x + x - 2 = 0 $}[/tex]

[tex]\Large \text{$ \sf x\:[\:x - 2\:] + 1\:[\:x - 2\:] = 0 $}[/tex]

[tex]\Large \text{$ \sf [\:x - 2\:]\:[\:x + 1\:] = 0 $}[/tex]

[tex]\Large \text{$ \sf x - 2 = 0 \rightarrow x = 2 $}[/tex]

[tex]\Large \text{$ \sf x + 1 = 0 \rightarrow x = -1 $}[/tex]

[tex]\Large \boxed{\boxed{\text{$ \sf S = \{-1\} $}}}[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE