Respuesta :
Answer:
[tex]\large \textsf{Read below}[/tex]
Step-by-step explanation:
[tex]\large \text{$ \sf Boiling\:point = 212^{\circ}$}[/tex]
[tex]\large \text{$ \sf Freezing\:point + 180^{\circ}= Boiling\:point$}[/tex]
Let's say k is the freezing point:
[tex]\large \text {$ \sf k + 180^{\circ} = 212^{\circ} $}[/tex]
[tex]\large \text {$ \sf k = 212^{\circ} - 180^{\circ} $}[/tex]
[tex]\large \boxed{\boxed{\text {$ \sf k = 32^{\circ} $}}}[/tex]
Answer:
32°F
Step-by-step explanation:
Let's define a variable to represent the freezing point of water in Fahrenheit. Let [tex] x [/tex] be the freezing point in Fahrenheit.
The given information states that the boiling point of water is 212°F, and this is 180°F higher than its freezing point.
So, we can set up an equation:
[tex] x + 180 = 212 [/tex]
Now, solve for [tex] x [/tex]:
[tex] x = 212 - 180 [/tex]
[tex] x = 32 [/tex]
Therefore, the freezing point of water in Fahrenheit is 32°F.